Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Vaccines (Basel) ; 10(10)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2044033

ABSTRACT

Vaccine adjuvants are substances that improve the immune capacity of a recombinant vaccine to a great extent and have been in use since the early 1900s; they are primarily short-lived and initiate antigen activity, mainly an inflammatory response. With the developing technologies and innovation, early options such as alum were modified, yet the inorganic nature of major vaccine adjuvants caused several side effects. Outer membrane vesicles, which respond to the stressed environment, are small nano-sized particles secreted by gram-negative bacteria. The secretory nature of OMV gives us many benefits in terms of infection bioengineering. This article aims to provide a detailed overview of bacteria's outer membrane vesicles (OMV) and their potential usage as adjuvants in making OMV-based vaccines. The OMV adjuvant-based vaccines can be a great benefactor, and there are ongoing trials for formulating OMV adjuvant-based vaccines for SARS-CoV-2. This study emphasizes engineering the OMVs to develop better versions for safety purposes. This article will also provide a gist about the advantages and disadvantages of such vaccines, along with other aspects.

2.
Front Bioeng Biotechnol ; 10: 867119, 2022.
Article in English | MEDLINE | ID: covidwho-1785314

ABSTRACT

Vaccines represent one of the most successful public health initiatives worldwide. However, despite the vast number of highly effective vaccines, some infectious diseases still do not have vaccines available. New technologies are needed to fully realize the potential of vaccine development for both emerging infectious diseases and diseases for which there are currently no vaccines available. As can be seen by the success of the COVID-19 mRNA vaccines, nanoscale platforms are promising delivery vectors for effective and safe vaccines. Synthetic nanoscale platforms, including liposomes and inorganic nanoparticles and microparticles, have many advantages in the vaccine market, but often require multiple doses and addition of artificial adjuvants, such as aluminum hydroxide. Biologically derived nanoparticles, on the other hand, contain native pathogen-associated molecular patterns (PAMPs), which can reduce the need for artificial adjuvants. Biological nanoparticles can be engineered to have many additional useful properties, including biodegradability, biocompatibility, and are often able to self-assemble, thereby allowing simple scale-up from benchtop to large-scale manufacturing. This review summarizes the state of the art in biologically derived nanoparticles and their capabilities as novel vaccine platforms.

3.
Front Microbiol ; 12: 752739, 2021.
Article in English | MEDLINE | ID: covidwho-1528836

ABSTRACT

The prevailing pandemic of SARS-CoV-2 highlights the desperate need of alternative vaccine-platforms, which are safe, effective, and can be modified to carry antigens of emerging pathogens. The current SARS-CoV-2 vaccines based on mRNA and adenoviral vector technology meet some of these criteria but still face limitations regarding administration route, mass production, stability, and storage. Herein, we introduce a novel SARS-CoV-2 vaccine candidate based on bacterial outer membrane vesicles (OMVs). Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) have been genetically modified to produce increased amounts of detoxified OMVs decorated with the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein. Intranasal immunization with RBD-decorated OMVs induced not only a robust immune response against the bacterial outer membrane components but also detectable antibody titers against the Spike protein. Cell culture infection assays using a Spike-pseudotyped lentivirus confirmed the presence of SARS-CoV-2 neutralizing antibodies. Highest titers against the SARS-CoV-2 Spike protein and most potent neutralization activity were observed for an alternating immunization regimen using RBD-decorated OMVs from ETEC and V. cholerae in turn. These results highlight the versatile vaccine applications offered by OMVs via expression of heterologous antigens in the donor bacterium.

4.
Hum Vaccin Immunother ; 17(9): 2965-2968, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1216574

ABSTRACT

Although COVID-19 vaccines have recently been approved for emergency use, search for new vaccines are still urgent, since the access of the countries, especially the poorest, to the vaccines, has shown to be slower than the necessary to rapidly control the pandemic. We proposed a novel platform for vaccine using recombinant receptor binding domain (rRBD) from Sars-Cov-2 spike protein and Neisseria meningitidis outer membrane vesicles (OMVs). The antigen preparation produced a humoral and cellular immune response. Taken together our findings suggest a good immunostimulatory patter in response to immunization with rRBD plus N. meningitidis OMV.


Subject(s)
COVID-19 , Meningococcal Vaccines , Vaccines , Bacterial Outer Membrane Proteins , COVID-19 Vaccines , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Am J Infect Control ; 48(8): 883-889, 2020 08.
Article in English | MEDLINE | ID: covidwho-361418

ABSTRACT

OBJECTIVE: The past 4 months, the emergence and spread of novel 2019 SARS-Cov-2 (COVID-19) has led to a global pandemic which is rapidly depleting supplies of personal protective equipment worldwide. There are currently over 1.6 million confirmed cases of COVID-19 worldwide which has resulted in more the 100,000 deaths. As these numbers grow daily, hospitals are being forced to reuse surgical masks in hopes of conserving their dwindling supply. Since COVID-19 will most likely have effects that last for many months, our nationwide shortage of masks poses a long term issue that must be addressed immediately. METHODS: Based on a previous study by Quan et al., a salt-based soaking strategy has been reported to enhance the filtration ability of surgical masks. We propose a similar soaking process which uses materials widely available in anyone's household. We tested this method of pretreating a variety of materials with a salt-based solution by a droplet test using fluorescently stained nanoparticles similar in size to the COVID-19 virus. RESULTS: In this study, we found that paper towels and surgical masks pretreated with the salt-based solution showed a noticeable increase in filtration of nanoparticles similar in size to the COVID-19 virus. We also show that the TWEEN20 used by Quan et al. is not a critical component for the solution, and using salt alone in solution still provides a dramatically increased level of protection. CONCLUSIONS: We believe this method will allow for healthcare workers to create a disposable added layer of protection to their surgical masks, N95s, or homemade masks by using household available products. Adoption of this method may play an essential role in ensuring the safety of healthcare workers during the COVID-19 pandemic and any pandemics that may arise in the future.


Subject(s)
Coronavirus Infections/prevention & control , Filtration/methods , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Masks/virology , Pandemics/prevention & control , Personal Protective Equipment/microbiology , Pneumonia, Viral/prevention & control , Betacoronavirus/pathogenicity , COVID-19 , Health Personnel , Humans , SARS-CoV-2 , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL